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Abstract (non-technical):

Bi-level optimization algorithms have been developed for use in a variety of problems, including
network design and defense systems and optimization under uncertainty, and network
interdiction applications. These algorithms often employ a technique that divides the decision-
making process into a first-stage master problem wherein one set of decisions are determined,
after which a set of separable second-stage problems are based on the first-stage decisions. The
master problem determines an optimistic assessment of the costs incurred in the second stage;
this assessment is then refined by a set of linear functions called cutting planes, which provide
cause-and-effect relationships between the first- and second-stage decisions. However, these
cutting planes are often ineffective in practical problems.

The improvement of these cutting planes is the subject of this proposal. The investigator
encountered a surprising feature of some bi-level problems, in which an exponential number of
cutting planes may need to be generated at each stage. By reformulating the first-stage problem
using slightly more variables and constraints, it was possible to capture all of these cutting planes
with a single inequality in the new variable space. Problems that were thought to be impossible
to optimality are shown to in fact be solvable within reasonable computational limits.
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Overview

The initial purpose of this brief seven-month proposal was to launch an investigation into
methods by which the efficacy of bi-level optimization algorithms can be improved by
examining a new technique that we have developed called "exponential inequality capture."

Bi-level optimization algorithms have been developed for use in a variety of problems, including
network design, scenario-based stochastic programming, and network interdiction applications.
These algorithms often employ a technique that divides the decision-making process into a first-
stage master problem wherein "linking" variable values are determined, after which a set of
separable second-stage subproblems are solved. The master problem determines an optimistic
assessment of the second-stage objective; this assessment is then refined by a set of cutting
planes, which provide "cause-and-effect" relationships between the linking decisions and
second-stage objective function. However, these cutting planes are often too weak to be used for
practical problems in which binary variables appear in the first stage.

The tightening of these cutting planes by an innovative master problem reformulation process
was the subject of this proposal. The investigator has encountered a surprising feature of some
bi-level problems, in which an exponential number of nondominated cutting planes (using
Benders decomposition) can be generated at each stage. However, by (a) reformulating the
master problem in a (polynomially sized) higher-dimensional space, and (b) linking the master
problem and subproblems via these new variables, it is possible to imply all of the exponentially
many cutting planes in the original variable space with a single inequality in the new variable
space. This result implies that previous problems that were thought to be impossible to solve via
exact optimization may in fact be solvable within reasonable computational limits.

We believe that the completion of this exploratory research has resulted in foundations that have
clear benefit to the Air Force. We will give one such example in the following section, which is
written in the context of product introduction but has a very relevant interpretation as an asset
acquisition problem under competition. We will also demonstrate that this technique has clear
application to multi-level optimization, game theory, and nonconvex optimization.

Illustration of Exponential Inequality Capture

To begin this report, we consider a two-person game played by two companies who can
potentially introduce products from the same set of product designs, N, into a market. One firm,
the leader, first introduces a set of products that belong to N. Then the other firm, the follower,
produces its line of products that also belong to N. The market is assumed to be exclusively
divided into a set of segments, M. Segment i c M has an (ordered) product preference list, Oi =

(pI,..pk1) ), where pi E N, Vj = l,...,k(i), are arranged such that segment i will purchase the

first product that is available in the list. That is, if products p! ,..., p/k, k < k(i), have not been

introduced to the market, while product pi + has been, then consumers in market segment i will

select product p+1. Furthermore, if no products in O have been introduced in the market, then
segment i will not purchase any product.



For each j E N, the leader and follower incur fixed costs bj and cj, respectively, for introducing
products to the market. We assume that the leader has a budget of B, and the follower a budget
of C, in the total expenditure for product introduction. Furthermore, assume that the revenue, rj,
yielded from each market segment i E M consuming productj E N is known a priori. If both the
leader and the follower offer product j, then we assume that IOOAj% of the demand for productj
by market segment i is supplied by the leader's product, while the follower satisfies the rest. For
convenience, let Hy. represent the set of markets that customerj prefers more than market i.

The objective of this particular problem is to maximize the leader's profit under the worst-case
scenario in which the follower acts as a predator, i.e., attempts to minimizes the leader's revenue.
In a military setting, this may correspond to a scenario in which one military unit acts first to
secure certain bases or strategic areas. The follower may then act next to reply to the leader's
actions, either by securing alternative areas, or challenging the leader for areas they initially
established. (The success of competing for a secured area would be given by the p parameters.)
The "customers" here would be access to assets on a battlefield, which would go to the military
unit that was nearest and would thus control the area.

Let xj andyj, for allj E N, denote binary variables of the leader and the follower, respectively. If
xj = 1 Qyj = 1), then the leader (follower) introduces productj. Else, productj is not offered by the
respective players. Furthermore, let wu be a variable that denotes the leader's actual revenue
obtained from market segment i E M that buys productj E Oi after the follower's penetration.

Note that given values of Y and y for x and y, respectively, the revenue collected by the leader
is given by the optimal solution to the following problem.

Maximize I I-Wii (la)
iEMJ EO i

Subject to: wy < ry(1 - Yk) ViEM,jE Oi,kEHi (lb)
wy<rij(r1 - Yk) V i EM,j E Oi, k E Hy (Ic)

wy rijYj V i E M,J E Oi (ld)

woj rJ1 - (1 - pvyi) yij ) V i E M,J E Oi (Ile)

We can now formulate the product introduction problem as a three-stage model:

Maxr, x -bTx + miny, y max I I WU (2a)
ieMjEO i

s.t.: wY < rOl - k) V i E M,J Oi, k E Hj (2b)
w <rl1 - Yk) V i E M,J E O, k E Hy (2c)

wo: ry Yi V i E M,J E Oi (2d)
wij< rJ I - (I -A)j) j V i E M,J E Oi (2e)



where Y = {y: 7-jCN Ciyi < C, yj binary, Vj E N}. Letting ak, /8yk, 2,, andaij denote dual variables
associated with constraints (1b), (1c), (1d), and (le), respectively, the dual to (1) is given as:

Minimize Z z J[r,(1-Yk)ayk+r#j(I-yk)flyk] +

iEMjEO, krHY

Z Z riij2Y2t + ri,(1- (I1- P°0) YJ)'UY (3a)
iEMjEO i

Subject to: -(ak +,Jk) +Aj +,uo =I ViEM,JEOi (3b)
kEHY

a, /8 , 'u > 0. (3c)

Using this dual, the problem in (2) can be rewritten as follows.

Maxx x -bTx+min J J -[r,(l-xk)aiJk+r(1-Yk)6,k] +
iEMjEO, kEHi

2Z vij + r(1-(1-POMYJ I (4a)
iEMjEO i

s.t.: Constraints (3b)-(3c) (4b)
yE Y. (4c)

Given x, the inner minimization problem in (4) is a bilinear integer program in which bilinear
terms Yk##k, and yjy consist of one binary variable and one continuous variable. Furthermore,
note that variables a, /f, 2, and ,u are constrained by (3b)-(3c), while the y-variables are
(disjointly) constrained by the set Y. Let fI denote the set of extreme points to the polyhedron
defined by (4b)-(4c). Then, we can rewrite (4) as:

MaXXEX -bTX + MinyE Y,(a, fl, r,U)E Il- Z IZ [r(I-xk)aik +ryj(1-Yk)flk] +
iEMjEOj kEHY1

I [irYXA + riiQ1- (1- pid)yti] (5)

iEMjEO i

Since the objective function in the inner minimization problem of (5) is affine in terms of x, we
can employ a cutting plane algorithm in the spirit of Benders decomposition. The Relaxed
Master Problem (RMP) takes on the form

Maximize bTx + z (6a)
Subject to: z < 11 [rY(-Xk k)+ryj(1--Yk)yk] +

iEMjEO kE H

iEMjEOi

V , ,,, E Y X II (6b)

x r X, (6c)



while the subproblem is given by the inner minimization problem in (4).

The problem with the above formulation is that the cutting planes produced from this algorithm
turn out to be very weak. The method by which we strengthen those inequalities embodies the
results from our proposed research.

Note that the cutting planes (6b) can be interpreted as the statement of an upper bound on z,
which can be modified by the selection or deselection of certain x-variables associated with
positive a- and A-values. The selection of these dual variables thus guides the decomposition
search procedure by encouraging the selection of x-variables that maximize z.

Hence, setting auk = 1 for some i E M,j E 0, and k E HO in the solution of (3) yields a term that
implies that setting xk = 0 can increase the right-hand-side by ru. However, if there were at least
two terms ki, k2 E H, such that Yk, = Fk2 = 0 in the previous solution, then setting either a,,, = I
or aijk2 = 1 does not accurately convey the condition that both xk, and xk, must equal zero in

order to possibly capture segment i by introducing productj.

The existence of alternative optimal dual solutions in this case implies that several cuts can be
generated from each Y -solution passed to the subproblem. Worse, we find that there may exist
an exponential number of these cuts, and that these cuts do not dominate one another. This
behavior creates a vital need for the research initiated in this proposal.

Given the problems explained above, we developed a method for removing the difficulties
stemming from the presence of alternative optimal dual solutions. Consider the following
reformulation of the master problem. For each segment/product pair i E M, j Oi, define
variables u# to equal one if] is the highest-preference product for market segment i that has been
introduced by the leader, and zero otherwise. That is, uy equals to xj 1 (1- Xk ).

kEHU

We linearize each of these terms using the following constraints:

uyj _< Xj (7a)
u, _< (1 - xk) V k E Hj (7b)uY >Xj+ 10- Xk) - IHYIl (7c)

kEHii

u4, > 0. (7d)

Problem (1) then becomes

Maximize E I Wi.  (8a)
iEMjEOi

Subject to: wo < riW ViE M,JE Oi (8b)

wy < r(I -Yk) V i EM,j Oi, k E Hy (8c)
wo:!< ry( -(I -pj j) V i E M, E Oi, (8d)



and taking its dual (with au now associated with (8b), fiuk associated with (8c), and uj associated
with (8d)) now yields:

Minimize , i o+ Z r,0(1 -Yk)3k] + r(I-(-. (9a)
iEMjEO i  [kEHY I

Subject to: a.j+ ZfAk +/t P, V iEM,J E0, (9b)

a, ,6,/P > 0. (9c)

The resulting cutting plane is given by

Z < I I r,, uj, ij + I  ij (- Yk )ik + r. ( - ( - p! )YJ );ij  (10)

iEMjEOi kEHY I

Smith et al. [3] provide details on deriving optimal duals to this problem in linear time, and
demonstrate that an exponential number of cutting planes of the form (6b) can be implied by a
single inequality of the form (10). This strength is due to the addition of only a quadratic
number of new variables in the master problem. Essentially, the exponential cut capture is due to
the fact that we can replace each u-variable with one of the x-variables for which it is a surrogate,
and there can be an exponential number of different replacement choices, each leading to a
distinct inequality in the x-space.

In comparing the x-variable approach with the u-variable approach, we derived 11 sets of test
problems having different values of [N, IM1, and 101, along with different parameter settings and
ratios (see [3] for a full description of these instances). A brief summary of the most effective
method based on cuts (6b) (the "x-cuts") versus the most effective method based on (10) (the "u-
cuts"), is given in Table 1, and conclusively demonstrates that master problem reformulation is
extremely effective in this application.

Table 1: Average CPU time for eleven different problem profiles, where each entry is an
average over ten problem instances

Problem Profile X-Cuts UC
1 122.9 0.4
2 569.9 1.1
3 1420.2 6.6
4 21.0 1.0
5 1579.0 2.7
6 1300.5 5.3
7 213.9 0.6
8 1445.0 1.1
9 46.9 1.7
10 295.4 1.8
11 8.7 1.2



Additional Progress

The remainder of this report regards progress made on other related projects dealing with bi-level
optimization via variants of mathematical programming decomposition algorithms.

Convexification strategies in solving risk management problems. In [1], we consider a class of
two-stage stochastic risk management problems, which may be stated as follows. A decision-
maker determines a set of binary first-stage decisions, after which a random event from a finite
set of possible outcomes is realized. Depending on the realization of this outcome, a set of
continuous second-stage decisions must then be made that attempt to minimize some risk
function.

This risk threshold can be very simple: In one variant, there exists a single specified risk
threshold value, which when exceeded under any recourse scenario, results in an additional
objective penalty being incurred. The overall objective function thus depends on the cost of the
first-stage decisions, plus the expected second-stage risk penalties. For instance, we can use this
modeling technique to model the situation in which we have a limited budget that cannot be
exceeded in the future without significant penalty. We would need to have a binary variable in
each scenario's problem to indicate whether or not this penalty is incurred, thus preventing the
use of Benders decomposition as described above.

In another variant, we consider a hierarchy of multiple risk levels along with associated penalties
for each possible scenario. This may correspond to the case of gradually increasing penalties for
missing certain target values. In construction situations, penalties increase in a nonlinear fashion
due to lateness, which can be handled by our modeling scheme (since lateness is a discrete
value). Also, these penalties can refer to varying costs of recourse schemes, e.g., to make up a
shortage in supply for logistics scenarios.

In each case, we develop a mixed-integer 0-1 programming model and adopt an automatic
convexification procedure using the Reformulation-Linearization Technique (RLT) to recast the
problem into a form that is amenable to applying Benders' partitioning approach. As a principal
computational expedient, we show in [1] how the reformulated higher-dimensional Benders'
subproblems can be efficiently solved via certain reduced-sized linear programs in the original
variable space.

Ad-hoc Cutting Planes for Integer and Nonlinear Subproblems. We contribute to the growing
interest in creating multiple levels for optimization problems in order to improve their
solvability. Some problems are very difficult because of scale and/or presence of nonlinear
terms or integer restrictions in the problem. Occasionally, these difficulties can be effectively
mitigated by splitting the problem into two phases, in order to permit more efficient handling of
the complicating problem aspects.

In [2], the PI considers a problem in tournament scheduling. In particular, the problem regards
the assignment of collegiate baseball teams to positions within a type of "knockout" tournament,



where a single winner advances from a set of mini-tournaments until the remaining teams reach a
neutral site location for a final championship. The tournament has three rounds, with
optimization occurring to minimize teams' travel in rounds 1 and 2 (since the 3 round would be
a fixed location). The tournament travel in round 1 is deterministic. However, the tournament
travel in round 2 is a nonlinear function of round 1 team placement decisions, and is subject to
stochasticity. While this problem could be modeled as a single nonlinear integer programming
formulation, it has a very weak relaxation and cannot practically be solved to optimality
(especially within the time limits that would be required to use it in a real setting). Instead, we
split the problem into a two-stage problem. The second-stage problem becomes a linear integer
program that can be quickly solved, with the nonlinearities being resolved due to the splitting of
the problem. The PI [2] gives a combinatorial cutting-plane technique that is shown to quickly
achieve a small optimality gap and produce tournament structures that are arguably superior to
the ones derived over the last few years.

The primary difficulty in passing inequalities in [2], and in other problems involving binary
variables in subproblems, is that duality information is not readily available from the second
stage, and so the traditional Benders inequalities are necessary, but not sufficient, to force the
algorithm to converge to an optimal solution. In response to this, a set of very weak (but valid)
cutting planes was proposed roughly 15 years ago by Laporte and Louveaux. In [6], the PI and
his student investigate a problem in facility location and activation, which is modeled as a two-
stage problem, as described below.

A traditional facility location/allocation problem could be described as follows. In a first stage, a
set of facilities must be located at some discrete points in a network, and each location incurs
some fixed charge. Demands are treated as uncertain, but after realizing certain demands on the
network, flows are then shipped across the network according to given costs for shipping along
network arcs, and subject to capacities on these arcs. (In fact, the costs and capacities, and
therefore the very existence of these arcs, may also be uncertain.) This setup corresponds well to
the two-stage stochastic programming setup, because the flow problems are all solvable by linear
programming, which yields duality information and permits the generation of Benders
inequalities.

However, the classical problem ignores cases in which facilities are located with one setup
charge, but another fixed charge must be paid in order to utilize a located facility. The
optimization challenge posed in this [6] is inherent in many military planning situations. A long-
range strategic plan may initially capture certain vital areas in some theater, which could then be
pursued as forward bases for future action in the campaign. The first-stage "facility location"
here would represent the vital areas to be secured early in the conflict. The second-stage
decisions would represent the "activation"' of the facilities (by mobilizing troops and
establishing advanced control centers), plus the costs associated with deploying troops from
these established bases. (Note that advanced bases cannot be established in vital areas that were
not previously secured.)

As another example, consider the location of hurricane relief shelters in hurricane-prone regions.
If a hurricane were to strike a certain region, some shelters in the region would be opened and
staffed, incurring a fixed activation cost. In the recourse problem, once a hurricane has struck a



region, we are limited to the facilities that have been located in the first stage to address the
needs of the hurricane victims. The variable flow costs would be proportional to the number of
people the shelter serves in a given scenario, which could be modelled by sending flows from the
shelter to those communities seeking aid.

The cutting planes prescribed in [6] are among the first to examine a particular problem having
integer second-stage variables and prescribe valid inequalities that are at least as tight as the
standard Laporte-Louveaux inequalities, due to the fact that they have been tailored to the
particular application under study. (The technique employed is to essentially reverse-engineer
flow solutions to determine the maximum benefit that could be obtained from locating a new
facility in the first stage.)

Embedding Bi-Level Cuts in Constraint Programming. While the use of integer programming
for solving difficult combinatorial optimization problems is well-established, there are several
constructs that are difficult to express using linear constraints and integer variables. In some
circumstances, solving a problem by constraint programming is a much more elegant algorithm
that uses less computational (memory and CPU time) resources than integer programming.
(Essentially, constraint programming is an implicit enumeration algorithm that uses advanced
fathoming rules to limit its search space without risking the possibility of failing to identify an
optimal solution.)

Rarely is the choice between these two methodologies clear, and traditionally, the problems are
solved by whichever technique is preferred by the researcher. However, there are several
structures that are particularly amenable to solution by mathematical programming, and many
others that are better suited for constraint programming. Our contributions have sought to split
notoriously difficult problems into two stages, even if the problem is more naturally modeled as
a single problem. The advantage that we seek is to split the problem into one structure that is
easily solvable by integer programming, and the other into a structure that is easily solvable by
constraint programming, using bi-level inequalities to pass information between the two.

One key application of these strategies arises in [4] and [7]. Over the past decade, Intensity
Modulated Radiation Therapy (IMRT) has developed into the most successful external-beam
radiation therapy delivery technique for many forms of cancer. This is due to its ability to deliver
highly complex dose distributions to cancer patients that enable the eradication of cancerous
cells while limiting damage to nearby healthy organs and tissues. Patients treated with IMRT
therefore often experience a higher chance of cure and suffer from fewer side effects of the
treatment.

External-beam radiation therapy is delivered from multiple angles by a device that can rotate
around a patient. The use of multiple (typically 3 - 9) angles is one of the tools that allow for the
treatment of deep-seated tumors while limiting the radiation dose to surrounding functioning
organs. IMRT is a more powerful therapy that modulates beam intensity, and dynamically
shapes beams with the help of a multileaf collimator (MLC) system. Such systems can
dynamically form many complex apertures by independently moving leaf pairs that block part of
the radiation beam.



The optimization at problem becomes one of arranging the leaf pairs in order to deliver the right
total dosage to a patient, as given by an input matrix called a fluence map. While some very
small instances (e.g., roughly 5 x 5) have been solved to optimality using integer programming,
no clinical-sized instance (e.g., roughly 20 x 20) had been solved, even when allocating may
hours of computational time.

Our approach was to determine a set of radiation intensities to deliver in an integer programming
phase, followed by a constraint programming phase that attempts to match the given intensity
values to leaf-pair positions that it generates. If not successful, the constraint programming
phase passes back a cutting plane to the integer programming phase, ensuring the eventual
convergence of the approach. This unique approach was surprisingly able to solve 23 out of 25
instances to optimality within 30 minutes of computational time.

A similar approach was stated in [5] for a problem in telecommunication network design. In this
problem, we actually formulate a three-stage problem in order to shift an integer programming
network design phase to the first two stages (solved by a combination of integer and constraint
programming), and then consider the impact of this design on a set of future scenarios in a third-
stage integer programming phase, from which a set of combinatorial Benders inequalities are
generated. This approach again dominates all other "pure algorithm" strategies as demonstrated
by the computational results.

Future Research

This initial study, while busy, is still the proverbial tip-of-the-iceberg in this field of study. We
are formalizing the situations in which exponential cut capture is possible, and when it is useful.
We intend to continue to investigate the success of broader cutting-plane ideas, and how they can
be used within multiple-algorithm settings such as the hybrid integer programming/constraint
programming ideas presented above. Future funding has been secured to continue this project,
and as a result, we will continue to provide results on bi-level optimization theory and
methodology.
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